

pubs.acs.org/IECR

# Improvement to Water Speciation and FeCO<sub>3</sub> Precipitation Kinetics in CO<sub>2</sub> Environments: Updates in NaCl Concentrated Solutions

Zheng Ma, Xin Gao, Bruce Brown, Srdjan Nesic, and Marc Singer\*

|  | Cite This: Ind. Eng. Chem. Res. 2021, 60, 17026–17035 |  |
|--|-------------------------------------------------------|--|
|--|-------------------------------------------------------|--|



# ACCESS

III Metrics & More

**ABSTRACT:** In the oil and gas industry, the dissolution rate of metal-based materials exposed to an aqueous phase is often controlled by the presence of surface layers such as corrosion products. Knowing the characteristics and rate of formation of these surface layers can help assess the level of protection against corrosion they provide and can permit the development of a successful asset integrity program. The appropriate determination of species concentration is a key aspect of accurately predicting the precipitation rate of corrosion products, more specifically of FeCO<sub>3</sub>, which is the main product of corrosion of steel in CO<sub>2</sub>-containing environments. While aqueous speciation in low-salinity brine is well-established, the effects of high NaCl contents (NaCl



Article Recommendations

 $\geq$  3 wt %) on water chemistry and FeCO<sub>3</sub> precipitation are less defined. In this work, two fundamental aspects of H<sub>2</sub>O/Fe/CO<sub>2</sub> system speciation in high salinity brine are discussed: the consumption of Fe<sup>2+</sup> due to the formation of ferrous chloride (FeCl<sup>+</sup>) complex and the dependence of  $K_{ca}$ , the first dissociation constant of H<sub>2</sub>CO<sub>3</sub>, on ionic strength. This leads to a comprehensive revision of the models used to calculate the solubility product of iron carbonate (FeCO<sub>3</sub>),  $K_{sp,FeCO_3}$ . In parallel, the kinetics of FeCO<sub>3</sub> precipitation are experimentally investigated using an electrochemical quartz crystal microbalance (EQCM) in concentrated NaCl solutions at varied temperatures (50–80 °C). This led to the development of a new kinetics model for FeCO<sub>3</sub> precipitation that now considers the nonideality of the solutions.

# INTRODUCTION

Corrosion prevention and control represent an important issue of study in the oil and gas industry, as internal corrosion of a pipeline is encountered during daily operation. The aqueous  $CO_2$  corrosion of carbon steel includes a complex system of interrelated processes that contains homogeneous aqueous  $CO_2$  chemical reactions and electrochemical reactions at the surface of carbon steel. The heterogeneous precipitation of iron carbonate (FeCO<sub>3</sub>), the most common corrosion product in aqueous  $CO_2$  corrosion of mild steel, may be triggered at the surface of carbon steel depending on the operating conditions.<sup>1</sup>

 $CO_2$  gas is not corrosive by itself. However, as it dissolves in an aqueous solution, as shown in reaction 1, it will lead to the formation of a weak acid. The chemistry of an aqueous solution containing dissolved  $CO_{2(aq)}$  involves the hydration of  $CO_{2(aq)}$  to form carbonic acid (reaction 3),  $H_2CO_3$  (a weak acid), followed by two partial dissociation steps (reactions 5 and 7). These chemical reactions, as well as the expressions of the corresponding equilibrium constants, are listed in Table 1.

Iron is then electrochemically dissolved at the anodic site to release ferrous ions when corrosion occurs:

Simultaneously, hydrogen ion reduction takes place at the cathodic site:<sup>2</sup>

$$2H^{+}_{(aq)} + 2e^{-} \rightarrow H_{2(g)}$$
 (10)

FeCO<sub>3</sub> precipitates from solution via the following reaction:

$$\operatorname{Fe}^{2+}_{(\mathrm{aq})} + \operatorname{CO}_{3}^{2-}_{(\mathrm{aq})} \rightleftharpoons \operatorname{FeCO}_{3(s)}$$
(11)

when the concentration product of  $\operatorname{Fe}^{2+}_{(aq)}$  and  $\operatorname{CO}_{3}^{2-}_{(aq)}$  exceeds the solubility product,  $K_{\operatorname{sp,FeCO}_{3'}}$  as defined by eq 12, where  $c_{\operatorname{Fe}^{2+}_{\operatorname{eq}}}$  and  $c_{\operatorname{CO}_{3,\operatorname{eq}}^{2-}}$  (mol·L<sup>-1</sup>) are the equilibrium aqueous concentration of Fe<sup>2+</sup> and CO<sub>3</sub><sup>2-</sup>, and  $K_{\operatorname{sp,FeCO}_{3}}$  (mol<sup>2</sup>·L<sup>-2</sup>) is a function that depends on both temperature ( $T_{\mathrm{K}}$  in Kelvin) and ionic strength (I in mol·L<sup>-1</sup>):

Received:July 27, 2021Revised:September 28, 2021Accepted:September 29, 2021Published:November 9, 2021



 $Fe \rightarrow Fe^{2+}_{(aq)} + 2e^{-}$ 

(9)

#### pubs.acs.org/IECR

| l'able 1. Chemical Reactions in an A | queous CO <sub>2</sub> Solution and | Corresponding Equilibrium | Expressions |
|--------------------------------------|-------------------------------------|---------------------------|-------------|
|--------------------------------------|-------------------------------------|---------------------------|-------------|

| name                         | chemical reaction                                                             | equilibrium expression                                                             |
|------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| CO <sub>2</sub> dissolution  | $CO_{2(g)} \rightleftharpoons CO_{2(aq)}$ (1)                                 | $K_{\rm sol,CO_2} = \frac{c_{\rm CO_2}}{p_{\rm CO_2}} $ (2)                        |
| CO <sub>2</sub> hydration    | $CO_{2(aq)} + H_2O_{(l)} \rightleftharpoons H_2CO_{3(aq)}$ (3)                | $K_{\rm hyd} = rac{c_{\rm H_2CO_3}}{c_{\rm CO_2}}$ (4)                            |
| carbonic acid dissociation   | $H_2CO_{3(aq)} \rightleftharpoons H^+_{(aq)} + HCO_3^{(aq)} $ (5)             | $K_{\rm ca} = \frac{c_{\rm HCO_3}^- \times c_{\rm H^+}}{c_{\rm H_2CO_3}} $ (6)     |
| bicarbonate ion dissociation | $HCO_{3}^{-}_{(aq)} \rightleftharpoons H^{+}_{(aq)} + CO_{3}^{-2}_{(aq)}$ (7) | $K_{\rm bi} = \frac{c_{\rm CO_3}^{-2} \times c_{\rm H^+}}{c_{\rm HCO_3}^{-}} $ (8) |

$$K_{\rm sp,FeCO_3} = c_{\rm Fe_{eq}^{2+}} \times c_{\rm CO_{3,eq}^{2-}}$$
(12)

where the ionic strength, a parameter that is used to represent the nonideal behavior in water chemistry,<sup>3-6</sup> can be calculated from the concentration  $c_j$  and charge  $z_j$  of different species in the solution:

$$I = \frac{1}{2} \sum_{j} c_j z_j^2 \tag{13}$$

Oddo and Tomson created a set of empirical equations<sup>7</sup> to determine some of the equilibrium constants mentioned above based on ionic strength and partial pressure of  $CO_2$ :

$$K_{\rm sol,CO_2} = \frac{14.5}{1.00258} \times 10^{-(2.27+5.65\times10^{-3}T_f - 8.06\times10^{-6}T_f^2 + 0.075I)}$$
(14)

$$K_{ca} = 387.6$$

$$\times 10^{-(6.41 - 1.594 \times 10^{-3}T_{f} + 8.52 \times 10^{-6}T_{f}^{2} - 3.07 \times 10^{-5}p_{CO_{2}} - 0.4772I^{1/2} + 0.11807I)}$$
(15)

$$K_{\rm bi} = 10^{-(10.61 - 4.97 \times 10^{-3} T_{\rm f} + 1.331 \times 10^{-5} T_{\rm f}^2 - 2.624 \times 10^{-5} p_{\rm CO_2} - 1.166 I^{1/2} + 0.34661 I)}$$
(16)

where  $T_{\rm f}$  is temperature in Fahrenheit and  $p_{\rm CO_2}$  is partial pressure of CO<sub>2</sub> in psi. The value of  $K_{\rm hyd}$  was determined to be 2.58 × 10<sup>-3</sup> at 25 °C and 2.31 × 10<sup>-3</sup> at 300 °C by Palmer and Eldik.<sup>8</sup>

The Oddo-Tomson model has been widely circulated in CO<sub>2</sub> related water chemistry calculation.<sup>1,9-11</sup> However, when comparing the predicted pH using Oddo-Tomson model with experimental data at three different temperatures (80, 50, and 30 °C), Gao<sup>12</sup> noticed the predictions are close to the measurements only when the NaCl concentration in solution is lower than 5 wt % ( $I < 0.9 \text{ mol} \cdot L^{-1}$ ) and deviate more and more from the measurements as the NaCl concentration is increased. All three equilibrium constants in the Oddo-Tomson model are ionic-strength-dependent and affect the accuracy of pH prediction. Among these three constants, it was shown<sup>12</sup> that the concentration of dissolved carbon dioxide,  $c_{\rm CO,}$ , calculated using  $K_{\rm sol,CO,}$ , agrees well with measurements.<sup>13</sup>  $K_{\rm bi}$  is significantly smaller than  $K_{\rm ca}$  (by about 5 orders of magnitude) under the tested conditions; thus, the proton production through reaction 7 is negligible as compared to that by reaction 5. On the basis of these observations, it can be concluded that the inaccuracy behind the expression of  $K_{ca}$ plays a key role in explaining the deviation and the eq 15

should be revised.

Efforts have been made to develop mathematical correlations between  $K_{\rm sp,FeCO_3}$  versus temperature<sup>14–19</sup> and  $K_{\rm sp,FeCO_3}$ versus I.<sup>20</sup> After comparing the predictions with measurements across different studies, a  $K_{\rm sp,FeCO_3}$  model, that includes the effects of temperature and ionic strength simultaneously, was developed by Sun and Nesic<sup>21</sup> by numerically combining a temperature-dependent  $K_{\rm sp,FeCO_3}$  model proposed by Greenberg and Tomson<sup>14</sup> together with an ionic-strength-dependent  $K_{\rm sp,FeCO_3}$  model proposed by Silva et al.:<sup>20</sup>

$$\log K_{\rm sp,FeCO_3} = -59.3498 - 0.041377T_{\rm K} - \frac{2.1963}{T_{\rm K}} + 24.5724 \log T_{\rm K} + 2.518I^{0.5} - 0.657I$$
(17)

This equation has been used in corrosion models<sup>9,22</sup> as well as FeCO<sub>3</sub> precipitation kinetics models.<sup>23,24</sup> However, in their recent work, Gao<sup>12</sup> challenged the above-mentioned expression of  $K_{sp,FeCO_3}$  and showed that the predicted  $K_{sp,FeCO_3}$  starts to deviate from measurements in a 5 wt % NaCl brine, and the deviation keeps increasing with the increase of the NaCl concentration in solutions. To solve this, Gao proposed some modifications to the two ionic-strength-dependent terms in eq 17 to better fit the measurements. Unfortunately, the possibility of forming ferrous chloride (FeCl<sup>+</sup>),<sup>25,26</sup> a complex that tends to form in chloride-containing solutions, was not considered in their work. This leaves the validity of the  $K_{sp,FeCO_3}$  equations contentious, as the formation of FeCl<sup>+</sup> could significantly decrease the actual amount of freely available ferrous ions in solutions.

The formation of FeCO<sub>3</sub> on a steel surface is believed to influence the corrosion process,<sup>27–29</sup> and several models have been developed to predict FeCO<sub>3</sub> precipitation kinetics based on experimental measurements.<sup>14,2,3,24,30,31</sup> Sun was the first to propose a model (S&N model) based on measuring the mass of FeCO<sub>3</sub> precipitated directly on a steel sample.<sup>23</sup> Other models developed before the S&N model determined the precipitated FeCO<sub>3</sub> mass indirectly via tracking the change of Fe<sup>2+</sup> concentration in bulk solution.<sup>14,30,31</sup> Because of this difference in experimental methodology, it has been argued that the S&N model provides more accurate predictions.<sup>23</sup> A later model proposed by Ma et al.<sup>24</sup> confirmed that the driving force for the precipitation process is a function of ( $S_{FeCO_3} - 1$ ) and that the precipitation rate ( $PR_{FeCO_3}$ ) could be calculated following the equation suggested by the S&N model:

$$PR_{FeCO_3} = k_{r,FeCO_3} e^{-\Delta^* G_{FeCO_3}/RT} K_{sp,FeCO_3} (S_{FeCO_3} - 1)$$
(18)

$$S_{\rm FeCO_3} = \frac{c_{\rm Fe_{free}}^{2+} \times c_{\rm CO_3}^{2-}}{K_{\rm sp, FeCO_3}}$$
(19)

 $c_{\mathrm{Fe_{free}}^{2+}}$  represents the concentration of freely available ferrous ions in solutions.

By using electrochemical quartz crystal microbalance (EQCM), Ma et al.<sup>24</sup> were able to monitor the real-time mass change of precipitated FeCO<sub>3</sub> on sample surface. This technique largely enhanced the accuracy of the measurements, as the S&N model was based on the measurements of the time-averaged mass change of precipitated FeCO<sub>3</sub>. However, the updated values of  $k_{r,FeCO_3}$  (3.32 × 10<sup>7</sup> m<sup>4</sup>·mol<sup>-1</sup>·s<sup>-1</sup>) and  $\Delta * G_{\text{FeCO}}$ . (73 739 J·mol<sup>-1</sup>) obtained in Ma et al.'s work cannot yet be directly applied in most of the nonideal solutions. These two parameters were calibrated in only 1 wt % NaCl solution, and they were calibrated based on incorrect  $S_{\rm FeCO_2}$  values. The expressions used to calculate  $c_{\rm CO_2}^{2-}$  and  $K_{\rm sp,FeCO_3}$  have been shown to be inaccurate in NaCl concentrated solutions; instead of  $c_{\text{Fe}_{\text{free}}^{2+}}$ , total  $c_{\text{Fe}}^{2+}$  (including both FeCl<sup>+</sup> and freely available Fe<sup>2+</sup>) was mistakenly used during the calculations. These issues are nevertheless only significant at high NaCl contents.

In this paper, the effect of salinity on the consumption of  $Fe^{2+}$  is evaluated as a function of temperature and NaCl concentration (in terms of ionic strength), and updates are proposed to the equations used to determine  $K_{ca}$ , the first dissociation constant of  $H_2CO_3$ , and the solubility product of  $FeCO_3$ ,  $K_{sp,FeCO_3}$ . Beyond that, the precipitation kinetics of  $FeCO_3$  are investigated using EQCM in solutions with varied NaCl concentrations to elucidate the effect of solution salinity on FeCO<sub>3</sub> precipitation kinetics.

### IMPROVEMENT TO WATER SPECIATION IN CO<sub>2</sub> ENVIRONMENTS

**Freely Available Fe**<sup>2+</sup> in NaCl Solutions. As introduced above, the actual amount of  $Fe^{2+}$  in solution that is freely available for  $FeCO_3$  precipitation is dependent on the formation of  $FeCl^+$  complex in NaCl aqueous solutions.<sup>25</sup> The formation reaction for  $FeCl^+$  is considered as follows:

$$\operatorname{Fe}_{(\operatorname{free})(\operatorname{aq})}^{2+} + \operatorname{Cl}_{(\operatorname{aq})}^{-} \rightleftharpoons \operatorname{FeCl}_{(\operatorname{aq})}^{+}$$
(20)

Its corresponding equilibrium constant expression,  $K_1$ , is thus defined as

$$K_1 = \frac{a_{\text{FeCI}^+}}{a_{\text{Fe}_{\text{free}}^{2+}} \times a_{\text{CI}^-}}$$
(21)

where  $a_{j}$ , the activity of species *j*, is the product of molality  $m_i$  in mol/kg(H<sub>2</sub>O) and activity coefficient  $\gamma_i$ ;  $K_1$  is dependent on temperature as follows:<sup>25</sup>

$$\log K_1 = -7.1783 + \frac{911.13}{T_{\rm K}} + 0.013407T_{\rm K}$$
(22)

Meanwhile, assuming that no other Fe<sup>2+</sup> complexes form, the mass balance on Fe<sup>2+</sup> (eq 23), can be used to express the total ferrous species molality in solution,  $m_{\text{Fe}^{2+}\text{total}}$  as a function of the molality of FeCl<sup>+</sup>,  $m_{\text{FeCl}^+}$ , and free Fe<sup>2+</sup>,  $m_{\text{Fe}^{2+}\text{free}}$ :

$$m_{\rm FeCl^+} + m_{\rm Fe^{2+}, free} = m_{\rm Fe^{2+}, total}$$
(23)

Article

The molality ratio between the free Fe<sup>2+</sup> and total Fe<sup>2+</sup>,  $R_{Fe^{2+}}$ , can thus be calculated if eqs 21 and 23 are combined:

pubs.acs.org/IECR

$$R_{\rm Fe^{2+}} = \frac{m_{\rm Fe^{2+}, free}}{m_{\rm Fe^{2+}, total}} = \frac{\gamma_{\rm FeCl^+}}{K_{\rm I} \cdot \gamma_{\rm Fe^{2+}} \cdot m_{\rm Cl} \cdot \gamma_{\rm Cl^-} + \gamma_{\rm FeCl^+}}$$
(24)

This clearly shows that  $R_{\text{Fe}^{2+}}$  is dependent on the nonideality of the given solution, <sup>25,26</sup> as indicated by the presence of activity coefficients, which cannot be assumed to be unity in highly concentrated solutions.

On the basis of eqs 22 and 24, the dependency of  $R_{\rm Fe}^{2+}$  on temperature can be mathematically examined. By considering solutions containing 100 ppm (wt) total Fe<sup>2+</sup> and pH 6.6 as an example (a condition that was normally used for FeCO<sub>3</sub> precipitation experiment as will be covered in a later section),  $R_{\rm Fe}^{2+}$  has only a marginal dependence on temperature, both with 1 and 25 wt % NaCl solutions. Only about 4% more FeCl<sup>+</sup> is formed when the temperature is raised from 10 to 90 °C in solution with 1 wt % NaCl, and there is almost no change in  $R_{\rm Fe}^{2+}$  for 25 wt % NaCl over the same temperature range.

The effect of NaCl concentration on  $R_{Fe^{2+}}$  is much stronger as shown in Figure 1 (90 °C, 100 ppm (wt) total Fe<sup>2+</sup> and pH



Figure 1.  $R_{Fe^{2*}}$  dependence on NaCl concentration with 100 ppm (wt) total  $Fe^{2+}$  and pH 6.6.

6.6). At 90 °C,  $R_{\rm Fe}^{2+}$  is 93% with 1 wt % NaCl, suggesting that 7% of Fe<sup>2+</sup> is already converted to FeCl<sup>+</sup>. However,  $R_{\rm Fe}^{2+}$ decreases to 62% when the solution contains 10 wt % NaCl, meaning that close to half of the total Fe<sup>2+</sup> ions is no longer available as free Fe<sup>2+</sup>. With 25 wt % NaCl, about 90% of the total Fe<sup>2+</sup> ions are in the form of FeCl<sup>+</sup> complexes. This leaves only 10% of the total Fe<sup>2+</sup> ions free and available to possibly precipitate into FeCO<sub>3</sub>. On the basis of this observation, it can be concluded that any calculation ignoring the formation of FeCl<sup>+</sup> could lead to an overestimation of the free Fe<sup>2+</sup> concentration and consequently of  $S_{\rm FeCO_3^*}$  especially with high NaCl content.

Many research works bypass the calculation complexity of nonideal models (i.e., use of activity coefficients in eq 24) by considering the effect of ionic strength, *I*. This parameter reflects the solution nonideality<sup>7,12,20,23,27</sup> and is much easier to access and implement; however, there is a cost in terms of model accuracy and expandability. Since many models still use the "ionic strength" approach (instead of the "activity" approach as in eqs 21 and 24), the development of a correlation identifying the dependence of  $R_{\rm Fe^{2+}}$  on ionic

strength would be quite valuable as it would greatly simplify the calculation process. To fulfill this purpose, the equilibrium constant for reaction 20 is redefined in the form of concentration (mol/L) instead of activity:

$$K_2 = \frac{c_{\text{FeCI}^+}}{c_{\text{Fe}_{\text{free}}^{2+}}c_{\text{CI}^-}}$$
(25)

Since the total concentration of Fe<sup>2+</sup>,  $c_{\text{Fe}_{\text{total}}^{2+}}$  is conserved in solution,  $K_2$  can also be calculated via the following equation:

$$K_{2} = \frac{c_{\rm Fe_{total}}^{2+} - c_{\rm Fe_{free}}^{2+}}{c_{\rm Fe_{free}}^{2+}Cl^{-}}$$
(26)

It is now assumed that  $K_2$ , calculated via concentration, should follow the same dependency with temperature as for  $K_1$ . Furthermore, the nonideality of the solution is addressed by including an ionic strength dependency in the expression of  $K_2$ . Consequently,  $K_2$  can be expressed in terms representing its dependency on temperature and ionic strength:

$$\log K_2 = f(I)_{K_2} + \frac{911.13}{T_{\rm K}} - 0.013407T_{\rm K}$$
(27)

This leads to eq 28 after putting the temperature terms together with log  $K_2$  and moving the ionic-strength-dependent term  $f(I)_{K_2}$  to the left-hand side of the equation:

$$f(I)_{K_2} = \log K_2 - \frac{911.13}{T_{\rm K}} + 0.013407T_{\rm K}$$
(28)

In order to derive  $K_{22}$ , an in-house solver (WELLCORP),<sup>34</sup> based on the Pitzer activity model, was employed to calculate molalities and activity coefficients of species in solutions with 1, 5, 10, 15, and 25 wt % NaCl at varied temperatures from 10 to 90 °C at a 10 °C interval. The corresponding concentrations in molality (mol/kg) are converted to molarity (mol/L) when the solution density for water ( $\rho_{\rm W}$  in g/cm<sup>3</sup>, eq 29) and for brine ( $\rho_{\rm B}$  in g/cm<sup>3</sup>, eq 30)<sup>35</sup> and solution volume in L (eq 31) are known:

$$\rho_{\rm W} = 1 + 1 \times 10^6 (-80T_{\rm c} - 3.3T_{\rm c}^2 + 0.00175T_{\rm c}^3 + 489P - 2T_{\rm c}P + 0.016T_{\rm c}^2P - 1.3 \times 10^{-5}T_{\rm c}^3P - 0.333P^2 - 0.002T_{\rm c}P)$$
(29)

$$\rho_{\rm B} = \rho_{\rm W} + c_{\rm NaCl} \{ 0.668 + 0.44 c_{\rm NaCl} + 1 \times 10^{-6} [300P - 2400P c_{\rm NaCl} + T_{\rm c} (80 + 3T_{\rm c} - 3300 c_{\rm NaCl} - 13P + 47P c_{\rm NaCl} ) ] \}$$
(30)

Vol. of Brine = 
$$\frac{\text{total mass of NaCl and H}_2\text{O}}{\rho_{\text{B}}}$$
 (31)

where  $T_c$  is the temperature in Celsius, *P* is the total pressure in Mpa, and  $c_{\text{NaCl}}$  is the weight fraction of NaCl.  $f(I)_{K_2}$  is plotted against  $I^{0.5}$  (where the black dots are the

 $f(I)_{K_2}$  is plotted against  $I^{0.5}$  (where the black dots are the calculated  $f(I)_{K_2}$  over different temperatures and salt concentrations) in Figure 2. A dependency with  $I^{0.5}$ , rather than *I*, results in a better fit. The complete expression of  $K_2$  can then be derived using a non-linear least-squares fitting method, and its final equation is written as eq 32:



pubs.acs.org/IECR

**Figure 2.** Fitting line for  $f(I)_{K_2}$  vs  $I^{0.5}$  for temperature between 10 to 90 °C.

$$\log K_2 = -7.4798 + 0.013407T_{\rm K} + \frac{911.13}{T_{\rm K}} + 0.4561I - 0.816I^{0.5}$$
(32)

Revision of  $K_{ca}$ . The expression of  $K_{ca}$  originally proposed by Oddo and Tomson<sup>12</sup> refers to concentrations (instead of activities) and already includes a dependence on  $I^{0.5}$ , as shown in eq 15.<sup>7</sup> The expression agrees well with experimental measurements in solutions containing relatively low NaCl concentration ( $\leq 5$  wt %) over a wide range of temperatures. However, a deviation appears in more concentrated solutions, which signals a need to adjust the terms initially proposed to cover the effect of ionic strength.

Equation 15 is rewritten to isolate the ionic strength and the temperature-pressure-dependent terms, as shown in eq 33. The ionic strength term (denoted as  $f(I)_{K_{ca}}$ ) is used to quantify the updated dependence on ionic strength by plotting the values calculated at different temperatures against *I*. An expression for f(I) can then be obtained using a nonlinear least-squares fitting method.

$$f(I)_{K_{ca}} = \log 387.6 - \log K_{ca} + 1.594 \times 10^{-3} T_{f}$$
  
- 8.52 × 10<sup>-6</sup> T<sub>f</sub><sup>2</sup> + 3.07 × 10<sup>-5</sup> p<sub>CO<sub>2</sub></sub> (33)

Experimental values for  $K_{ca}$  were determined by collecting measured pH over different temperatures (5–80 °C) in solutions containing dissolved CO<sub>2</sub> (0.53–0.99 bar) and with various salt concentrations (0.1–25 wt %) from the literature.<sup>12,36,37</sup> Equation 33 is plotted against  $I^{0.5}$  as dots in Figure 3, where the dotted line is the best fit obtained over the entire range of temperature selected. As can be seen from the figure, rather than the quadratic correlation with  $I^{0.5}$  as suggested by eq 15,<sup>7</sup> as well as proposed by the expressions of Oddo and Tomson<sup>7</sup> and Gao,<sup>12</sup> the best fit involves a linear dependency with  $I^{0.5}$ . This agrees with experimental results measured by Lyman<sup>38</sup> and Mehrbach et al.<sup>39</sup> The final equation of  $K_{ca}$  is written as eq 34:

$$K_{ca} = 387.6$$

$$\times 10^{-(6.6216 - 1.594 \times 10^{-3}T_{f} + 8.52 \times 10^{-6}T_{f}^{2} - 3.07 \times 10^{-5}p_{CO_{2}} - 0.7379I^{1/2})}$$
(34)

Experimentally measured pH values are compared in Figure 4 with the predictions using the original  $K_{ca}$  expression from Oddo and Tomson,<sup>7</sup> as shown in eq 15 and the modified  $K_{ca}$  equation (eq 34) at different temperatures. For all the



Figure 3.  $f(I)_{K_{ca}}$  vs  $I^{0.5}$  at different temperatures.<sup>12,36,37</sup>

temperatures tested, from 5 to 80 °C (with a partial pressure of  $CO_2$  ranging from 0.53 to 0.99 bar), the predictions using the updated  $K_{ca}$  expression not only exhibit the same trend as observed from measurements but also agree much better

(within 4% difference) with experimental values than Oddo and Tomson's equation. The improvement is especially significant in the more concentrated solutions (NaCl > 5 wt %).

*Revision of*  $K_{sp,FeCO_3}$ . In a manner similar to that for  $K_{ca}$ , the expression developed for  $K_{sp,FeCO_3}$  is also recalibrated to better account for nonideality, for the presence of FeCl<sup>+</sup> complex formation,<sup>25</sup> and for the change in the value of  $K_{ca}$  in CO<sub>2</sub> corrosion environments.  $K_{sp,FeCO_3}$  represents the equilibrium state between precipitation and dissolution of FeCO<sub>3</sub>. Under this circumstance, the value of  $K_{sp,FeCO_3}$ , as explained in eq 12, is expressed as the concentration product of freely available Fe<sup>2+</sup>(aq) and CO<sub>3</sub><sup>2-</sup>(aq). This means that at equilibrium  $K_{sp,FeCO_3}$  can be directly calculated if  $c_{Fe_{free}}^{2+}$  and  $c_{CO_3}^{2-}$  are both known. Gao<sup>12</sup> calculated  $K_{sp,FeCO_3}$  in this manner but failed to consider the FeCl<sup>+</sup> formation and, consequently,  $c_{Fe_{free}}^{2+}$  was overestimated. To correct this issue, the actual  $c_{Fe_{free}}^{2+}$  in Gao's



Figure 4. pH comparison between model calculations<sup>7</sup> and experimental results<sup>12,36,37</sup> at different temperatures.

17030

work was recalculated using eq 24. In addition, the corresponding  $c_{CO_3^{2-}}$  was also recalculated using the modified  $K_{ca}$  presented earlier (eq 34).

The correlation between  $K_{\rm sp,FeCO_3}$  and ionic strength can be explored using a similar methodology that has been used to extract  $K_2$  and  $K_{\rm ca}$ . The original expression for  $K_{\rm sp,FeCO_3}$  (eq 17) is rewritten to isolate the temperature- and ionic-strengthdependent terms (denoted as  $f(I)_{K_{\rm sp,FeCO_3}}$  in eq 35). An expression for  $f(I)_{K_{\rm sp,FeCO_3}}$  can easily be obtained by plotting the  $f(I)_{K_{\rm sp,FeCO_3}}$  against  $I^{0.5}$ .

$$\log K_{\rm sp, FeCO_3} = f(I)_{K_{\rm sp, FeCO_3}} - 0.041377T_{\rm K} - \frac{2.1963}{T_{\rm K}} + 24.5724 \log T_{\rm K}$$
(35)

$$f(I)_{K_{\rm sp,FeCO_3}} = \log K_{\rm sp,FeCO_3} + 0.041377 T_{\rm K} + \frac{2.1963}{T_{\rm K}} - 24.5724 \log T_{\rm K}$$
(36)

As mentioned earlier, the experimental data used to perform the calibration are taken from Gao's work.<sup>12</sup> The experiments were conducted with brines containing salt concentration ranges from 1 to 25 wt % at 80 °C. The calculated  $f(I)_{K_{sp,FeCO3}}$ versus  $I^{0.5}$  based on the above-mentioned procedure is presented in Figure 5, where the black dots are the calculations



Figure 5. Fitting line for  $f(\log K_{sp,FeCO_3})_{T_K}$  vs  $I^{0.5}$  obtained at 80 °C.<sup>12</sup>

over six different salt concentrations. A modified expression of  $K_{sp,FeCO_3}$  can now be determined from the best fit line, and its final equation is written in eq 37:

$$\log K_{\rm sp,FeCO_3} = -59.4 - 0.041377T_{\rm K} - \frac{2.1963}{T_{\rm K}} + 24.5724 \log T_{\rm K} + 2.6349I^{0.5} - 1.0027I$$
(37)

 $S_{\rm FeCO_3}$  in Gao's work<sup>12</sup> are recalculated using the modified  $K_{\rm ca}$  and  $K_{\rm sp,FeCO_3}$  expressions and plotted (diamonds) in Figure 6. The results are compared with the predicted  $S_{\rm FeCO_3}$  (dots), calculated via Oddo–Tomson's  $K_{\rm ca}^{\ 7}$  and the S&N model's  $K_{\rm sp,FeCO_3}$ .<sup>21</sup> The mass change due to FeCO<sub>3</sub> precipitation/ dissolution is also included as a black line for ease of illustration. According to Gao, the measurement started in a FeCO<sub>3</sub> saturated solution with 1 wt % NaCl, and the author adjusted the solution pH to push the saturation of FeCO<sub>3</sub> to



**Figure 6.** Mass change (black curve) of FeCO<sub>3</sub> precipitation and the corresponding  $S_{FeCO_3}$  calcualted based on Oddo–Tomson's  $K_{ca}^{7}$  and S&N model's  $K_{sp,FeCO_3}^{21}$  (navy blue dots) and that calculated based on modified  $K_{ca}$  and  $K_{sp,FeCO_3}$  (red diamonds). Experimental values are taken from Gao's work at 80 °C, NaCl concentration 1–25 wt %.<sup>12</sup>

reach equilibrium  $(S_{FeCO_3} = 1)$ . Additional NaCl was introduced into the solution in a stepwise manner (vertical dashed lines in Figure 6) to change the ionic strength of the solution. The mass change curve in the Figure 6 shows that the system always reached equilibrium (no significant mass change was observed over time) before further NaCl was added, so the  $S_{\text{FeCO}_3}$  at these points should be close to 1. The predicted  $S_{\text{FeCO}_3}$  based on the modified  $K_{\text{ca}}$  and  $K_{\text{sp,FeCO}_3}$  coincide well, as expected, with all the data points (red diamonds), staying close to the line of  $S_{FeCO_3} = 1$ . The predicted  $S_{FeCO_3}$  (navy blue dots) calculated from Oddo–Tomson's  $K_{ca}^{7}$  and S&N model's  $K_{sp,FeCO_3}$ <sup>21</sup> however, largely underestimated the saturation levels of the solution, especially when the solution contained high NaCl concentration. On the basis of these values, FeCO<sub>2</sub> should have continued dissolving, since the predicted  $S_{\text{FeCO}}$ values are well below 1. This is contrary to what was observed experimentally, since the system always reached equilibrium shortly after the injection of NaCl, showing no mass change (i.e., the FeCO<sub>3</sub> precipitation and dissolution rates were equal).

#### INVESTIGATION OF PRECIPITATION KINETICS OF FECO<sub>3</sub> BY EQCM

As discussed, the model proposed by Ma et al.<sup>24</sup> was calibrated using the experimental data obtained in a 1 wt % NaCl electrolyte. The effect of solution salinity on FeCO<sub>3</sub> precipitation kinetics remains unclear and is explored here in solutions containing different dissolved NaCl concentrations. A series of experiments are conducted using an EQCM to accurately measure the rate of FeCO<sub>3</sub> precipitation on an iron substrate. In addition, the modified  $K_{ca}$  and  $K_{sp,FeCO_3}$ expressions together with the reduction of Fe<sup>2+</sup> due to the formation of FeCl<sup>+</sup> complex are considered in this work to characterize the electrolyte speciation and  $S_{FeCO_3}$ .

**Experimental Procedure.** All the precipitation experiments were conducted using a 2 L, three-electrode glass cell as shown in Figure 7. A Stanford Research System manufactured EQCM device, QCM200, and a 5 MHz At-cut Fe-coated quartz crystal with a 1.37 cm<sup>2</sup> effective area were used in this study. The aqueous solution with a controlled NaCl



Figure 7. Experimental setup with EQCM (image printed with permission of Cody Shafer, ICMT).

concentration was deaerated by sparging with CO<sub>2</sub> gas for at least 2 h before starting the experiment, and the CO<sub>2</sub> sparging was maintained thorough the entire experiment to saturate the solution. The temperature of the solution was set to the desired value, and the solution pH was adjusted to 6.60 with deoxygenated NaHCO3 solutions. The quartz crystal was installed into the EQCM holder and served as the working electrode. A platinum wire mesh was used as the reference electrode. A saturated silver-silver chloride (Ag/AgCl) electrode was used as the counter electrode. A potentiostat (Gamry Reference 600) was used to apply a specific potential as needed. A controlled volume of deaerated ferrous chloride (FeCl<sub>2</sub>·4H<sub>2</sub>O) solution was added to provide additional  $Fe^{2+}$ and adjust the level of FeCO<sub>3</sub> saturation. During the measurement, bulk pH of the solution was recorded and  $c_{\text{Fe}^{2+}}$ was measured by Genesys 10S Vis Spectrophotometer periodically.  $S_{FeCO_3}$  of the solution was calculated based on known solution pH, temperature, the pressure of CO<sub>2</sub>, and  $c_{\text{Fe}_{\text{ferm}}^{2+}}$  according to eq 19. The methodology of measuring FeCO<sub>3</sub> precipitation rate using EQCM was explained in full detail by Ma et al.,<sup>24</sup> and the exact same approach was followed in this work. It is understood that FeCO<sub>3</sub> precipitation includes both the nucleation period and crystal growth period. The current work focuses on the growth period only. A summary of the experiment conditions is shown in Table 2.

**Experimental Results and Discussion.** Ma et al.<sup>24</sup> developed their latest model based on the measurement results obtained following the exact same experimental methodology; however, the work was done only at 1 wt % NaCl solutions.<sup>24</sup> It is consequently worth assessing whether the model (eq 18 with  $k_{r,FeCO_3}$  (3.32 × 10<sup>7</sup> m<sup>4</sup>·mol<sup>-1</sup>·s<sup>-1</sup>) and  $\Delta^*G_{FeCO_3}$  (73 739 J·mol<sup>-1</sup>)) can accurately predict the precipitation rate of FeCO<sub>3</sub> in more concentrated NaCl solutions.

| Table 2. Experimental Matrix of FeCO <sub>3</sub> Precipitation in | ı |
|--------------------------------------------------------------------|---|
| Solutions with Varied NaCl Concentrations                          |   |

| description                           | parameters                        |
|---------------------------------------|-----------------------------------|
| solution                              | 3, 5, and 9 wt % NaCl             |
| total pressure/bar                    | 1                                 |
| sparge gas                            | $CO_2$                            |
| initial solution pH                   | $6.60 \pm 0.05$                   |
| stir bar speed/rpm                    | 50                                |
| materials                             | polished Fe-coated quartz crystal |
| polarization                          | -0.05 to -0.1 V vs OCP            |
| temperature/°C                        | 60, 70, 80                        |
| initial [Fe <sup>2+</sup> ]/ ppm (wt) | ~125                              |

Figure 8 shows the measured  $PR_{FeCO_3}$  in aqueous solutions with progressively higher NaCl concentration and the comparison with model predictions (shown as lines in the figure) using  $\Delta^*G_{FeCO_3} = 73739 \text{ J}\cdot\text{mol}^{-1}$  and  $k_{r,FeCO_3} = 3.32 \times$ 



Figure 8. Comparison between model predictions and measured results in solutions with different NaCl concentrations at 80  $^\circ$ C, initial pH 6.60, and 0.53 bar CO<sub>2</sub>.

 $10^7 \text{ m}^4 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$ . The measured results in 1 wt % NaCl solution was obtained from Ma et al.,<sup>24</sup> and the  $S_{\text{FeCO}}$  was recalculated considering all the updates regarding  $K_{ca}$ ,  $K_{sp,FeCO,v}$ and the reduction of  $c_{\text{Fe}^{2+}}$  (i.e.,  $c_{\text{Fe}_{\text{from}}^{2+}}$  was used) as discussed in the previous section. It is clear that by using values for  $k_{r,FeCO_3}$ and  $\Delta * G_{FeCO_3}$  extracted in 1 wt % NaCl solution the PR<sub>FeCO\_3</sub> predicted from eq 18 agreed well with the EQCM measurements in 1 wt % NaCl solutions. However, the model does not provide accurate predictions when compared with measured results in more concentrated solutions: The predicted PR<sub>FeCO</sub>, increases with the increase of NaCl concentration, while the measured values are closer together. No clear trend of PR<sub>FeCOa</sub> can be extracted with respect to NaCl. This suggests that the values of these two kinetic related parameters need to be reevaluated considering different solution ionic strengths to extend the validity of use. In addition, an approximately linear relationship between precipitation rate and  $S_{FeCO_2}$  still applies in NaCl concentrated solutions.

The  $PR_{FeCO_3}$  values in NaCl concentrated solutions were also measured at 60 and 70 °C. Similar to what is shown in Figure 8, the predicted  $PR_{FeCO_3}$  show a clear dependency on NaCl concentrations such that adding NaCl in solutions makes the precipitation of FeCO<sub>3</sub> faster, yet the measured  $PR_{FeCO_3}$ values exhibit no clear correlation with NaCl concentration. A deviation between the predicted values and measured values exists, and this becomes more obvious in solutions with higher NaCl content. This is not surprising given that the  $k_{r,FeCO_3}$  and  $\Delta^*G_{FeCO_3}$  used here were taken from a solution with a relatively low NaCl concentration.

Updates in Activation Energy and Kinetic Constant in the FeCO<sub>3</sub> Precipitation Rate Equation. The previous section has shown that the model proposed by Ma et al.<sup>24</sup> fails in NaCl concentrated conditions due to the inaccurate activation energy and kinetic constant values. Updated values for the  $\Delta * G_{FeCO_3}$  and  $k_{r,FeCO_3}$  are extracted based on experimental results. All the measured data are taken from previously presented FeCO<sub>3</sub> precipitation experimental results.

By taking a natural logarithm of both sides of the precipitation rate equation (eq 18), eq 38 can be obtained:

$$\ln \frac{PR_{FeCO_3}}{K_{sp,FeCO_3}(S_{FeCO_3} - 1)} = -\frac{\Delta^* G_{FeCO_3}}{RT} \ln k_{r,FeCO_3}$$
(38)

Therefore, if  $\ln \frac{PR_{FeCO_3}}{K_{sp,FeCO_3}(S_{FeCO_3}-1)}$  vs  $\left(-\frac{1}{RT}\right)$  is plotted, then a straight line should theoretically be obtained with the slope being equal to the activation energy  $\Delta^*G_{FeCO_3}$  and the y intercept being the ln  $k_r$  as shown in Figure 9, by taking 1 wt % experimental data as an example. The best fit line yielded  $\Delta^*G_{FeCO_3} = 74398 \text{ J}\cdot\text{mol}^{-1}$  and  $k_r = 4.99 \times 10^7 \text{ m}^4 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$  by using the average experimental value at each temperature.

The exact same methodology was followed to extract the two kinetics parameters in each different NaCl concentrated solutions. The corresponding values of these two parameters derived from all four measured conditions are summarized in Table 3. Notice that the NaCl concentration affected  $\Delta * G_{FeCO_3}$  and  $k_{r,FeCO_3}$  in different ways. For  $\Delta * G_{FeCO_3}$ , the changes of adding NaCl were minor enough that the deviation of



**Figure 9.** Best fit line for activation energy and kinetic constant in the  $FeCO_3$  precipitation rate equation.

Table 3. Extracted  $\Delta G_{FeCO_3}$  and  $k_{r,FeCO_3}$  in Nonideal Solutions

| wt %<br>NaCl | ionic strength $(mol \cdot L^{-1})$ | $\Delta^*G_{ m FeCO_3}$<br>(kJ·mol <sup>-1</sup> ) | $k_{r,FeCO_3}$<br>(m <sup>4</sup> ·mol <sup>-1</sup> ·s <sup>-1</sup> ) |
|--------------|-------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|
| 1            | 0.17                                | 74.4                                               | $4.99 \times 10^{7}$                                                    |
| 3            | 0.52                                | 75.9                                               | $5.79 \times 10^{7}$                                                    |
| 5            | 0.86                                | 73.0                                               | $1.26 \times 10^{7}$                                                    |
| 9            | 1.67                                | 71.9                                               | $5.16 \times 10^{6}$                                                    |
|              |                                     |                                                    |                                                                         |

 $\Delta^*G_{\rm FeCO_3}$  was within 6%, whereas  $k_{\rm r,FeCO_3}$  changed by about 10-fold when the NaCl concentration increased from 1 to 9 wt %. This leads to the development of a new precipitation rate equation for FeCO<sub>3</sub>. It follows the same format as eq 18, yet the effect of NaCl concentration on both  $\Delta^*G_{\rm FeCO_3}$  and  $k_{\rm r,FeCO_3}$  are now considered:

$$PR_{FeCO_3} = (8 \times 10^7 \text{ e}^{-1.7I}) \exp\left(-\frac{73800}{RT}\right) K_{sp,FeCO_3}$$
$$(S_{FeCO_3} - 1)$$
(39)

in which  $\Delta^* G_{\text{FeCO}_3} = 73\,800 \text{ J}\cdot\text{mol}^{-1}$  is the averaged value of  $\Delta^* G_{\text{FeCO}_3}$  as listed in Table 3 and  $k_{\text{r,FeCO}_3} = 8 \times 10^7 \text{ e}^{-1.7I} \text{ m}^4 \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$  with ionic strength, *I*, included in the exponent term (highlighted in red) was determined via the best fit line as illustrated in Figure 10.

The parity plots that compare the experimental and calculated  $FeCO_3$  precipitation rates are shown in Figure 11. The graph on the left shows the predicted precipitation rate



Figure 10. Extracted kinetic constant vs ionic strength on a semi-logarithmic scale.



Figure 11. Parity plot showing comparisons between experimental and calculated precipitation using the outdated model proposed by Ma et al.<sup>24</sup> (left) and using the improved model, which includes all the updates discussed in this work (right).

using the equation proposed by Ma et al.<sup>24</sup> where  $\Delta * G_{FeCO_3}$ and  $k_{r,FeCO_3}$  are constants and based on 1 wt % NaCl solution. The graph on the right shows the predictions of the current model with the new correlations, which included all the improvements discussed in this paper. Most of the points on the left are above the diagonal line, meaning that the predictions are higher than the measurements, as illustrated in Figure 8, whereas the points on the right side of the plot are distributed closer together and much more evenly around the diagonal line, suggesting a significant improvement of fit. Most of the predicted precipitation rates with the new constants agree with the experimental values within a 50% difference.

#### CONCLUSIONS

Several modeling improvements impacting the accuracy of FeCO<sub>3</sub> precipitation kinetic calculations have been described: (i) The formation of FeCl<sup>+</sup> in the presence of NaCl significantly affects the actual free Fe<sup>2+</sup> concentration and  $S_{FeCO_3}$  value. An ionic-strength-based equilibrium constant,  $K_2$ , has been derived to estimate the dissociation degree of FeCl<sup>+</sup>. (ii) The dependency of  $K_{ca}$  on ionic strength has been reexamined. Rather than the quadratic correlation with  $I^{0.5}$ , as suggested by literature,<sup>7,12</sup> log  $K_{ca}$  changes linearly with  $I^{0.5}$ . (iii) The expression of  $K_{sp,FeCO_3}$  has been modified to include the effect of FeCl<sup>+</sup> complex formation and the updated  $K_{ca}$ expression. Using newly obtained experimental measurements, its dependency on ionic strength was also re-evaluated as the previously derived expression<sup>21</sup> was found to considerably underestimate the actual  $S_{FeCO_3}$  value.

In addition, the precipitation rate of FeCO<sub>3</sub> was measured in solutions with varied concentration of NaCl within the temperature range 60–80 °C: (i) By using the values of  $k_{r,FeCO_3}$  and  $\Delta * G_{FeCO_3}$  calibrated from 1 wt % NaCl solution, the predicted value of PR<sub>FeCO\_3</sub> using the Ma et al.<sup>24</sup> model agreed well with the EQCM measurements in 1 wt % NaCl solutions. However, this model tends to overestimate the FeCO<sub>3</sub> precipitation rate in NaCl concentrated solutions. (ii) Experimental PR<sub>FeCO\_3</sub> measured via EQCM suggested that increasing NaCl from 1 to 9 wt % did not significantly change PR<sub>FeCO\_3</sub>. (iii) A kinetic model of FeCO<sub>3</sub> precipitation

considering the effect of nonideality was proposed. A significant improvement in  $PR_{FeCO_3}$  prediction was obtained when comparing with the Ma et al.'s model.<sup>24</sup>

It should be mentioned that all of the expressions derived in the current work are for use with NaCl. Caution should be used if different salts are present, especially for salts with divalent ions, as the ionic strength approach is an "engineering" approach that aims to express nonideality in a simplified way. For more robust predictions, an approach based solely on species activities, as introduced in eqs 21 and 24, should be followed.

#### AUTHOR INFORMATION

#### **Corresponding Author**

Marc Singer – Institute for Corrosion and Multiphase Technology, Ohio University, Athens, Ohio 45701, United States; o orcid.org/0000-0002-0762-9755; Email: singer@ohio.edu

#### Authors

- Zheng Ma Institute for Corrosion and Multiphase Technology, Ohio University, Athens, Ohio 45701, United States
- Xin Gao Institute for Corrosion and Multiphase Technology, Ohio University, Athens, Ohio 45701, United States
- **Bruce Brown** Institute for Corrosion and Multiphase Technology, Ohio University, Athens, Ohio 45701, United States
- Srdjan Nesic Institute for Corrosion and Multiphase Technology, Ohio University, Athens, Ohio 45701, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.iecr.1c02957

#### Notes

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

The authors thank the following companies for their financial support: Ansys, Baker Hughes, BP America, Chevron Energy Technology, Clariant Corporation, CNOOC, ConocoPhillips, ExxonMobil, M-I SWACO (Schlumberger), Multi-Chem (Halliburton), Occidental Oil Company, Pertamina, Saudi Aramco, Shell Global Solutions, Sinclair Energy Partners, SINOPEC (China Petroleum), and TOTAL.

#### REFERENCES

(1) Nesic, S.; Sun, W. Corrosion in acid gas solutions. In *Shreir's Corrosion*, Cottis, B.; Graham, M.; Lindsay, R.; Lyon, S.; Richardson, T.; Scantlebury, D.; Stott, H., Eds. Elsevier: Oxford, 2010; pp 1270–1298.

(2) Tran, T.; Brown, B.; Nesic, S. In Corrosion of Mild Steel in an Aqueous CO2 Environment – Basic Electrochemical Mechanisms Revisited, CORROSION 2015, Dallas, Texas, Dallas, Texas, 2015.

(3) Harvie, C. E.; Møller, N.; Weare, J. H. The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO<sub>4</sub>-OH-HCO<sub>3</sub>-CO<sub>3</sub>-CO<sub>2</sub>-H<sub>2</sub>O system to high ionic strengths at  $25^{\circ}$ C. *Geochim. Cosmochim. Acta* **1984**, *48* (4), 723–751.

(4) Duan, Z.; Sun, R. An improved model calculating  $CO_2$  solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. *Chem. Geol.* **2003**, 193, 257–271.

(5) Li, D.; Duan, Z. The speciation equilibrium coupling with phase equilibrium in the  $H_2O-CO_2$ -NaCl system from 0 to 250 °C, from 0 to 1000 bar, and from 0 to 5 molality of NaCl. *Chem. Geol.* **2007**, 244 (3), 730–751.

(6) Zhao, H.; Fedkin, M. V.; Dilmore, R. M.; Lvov, S. N. Carbon dioxide solubility in aqueous solutions of sodium chloride at geological conditions: Experimental results at 323.15, 373.15, and 423.15 K and 150 bar and modeling up to 573.15 K and 2000 bar. *Geochim. Cosmochim. Acta* **2015**, *149*, 165–189.

(7) Oddo, J. E.; Tomson, M. B. Simplified calculation of  $CaCO_3$  saturation at high temperatures and pressures in brine solutions. *JPT*, *J. Pet. Technol.* **1982**, 34 (07), 1583–1590.

(8) Palmer, D. A.; Van Eldik, R. The chemistry of metal carbonato and carbon dioxide complexes. *Chem. Rev.* **1983**, *83*, 651–731.

(9) Zheng, Y.; Ning, J.; Brown, B.; Nesic, S. Advancement in predictive modeling of mild steel corrosion in  $CO_2$ - and  $H_2S$ - containing environments. *Corrosion* **2016**, 72 (5), 679–691.

(10) Zheng, Y.; Ning, J.; Brown, B.; Nesic, S. Electrochemical model of mild steel corrosion in a mixed  $H_2S/CO_2$  aqueous environment in the absence of protective corrosion product layers. *Corrosion* **2015**, 71, 316–325.

(11) Nordsveen, M.; Nesic, S.; Nyborg, R.; Stangeland, A. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films part 1: Theory and verification. *Corrosion* **2003**, *59* (5), 443–456.

(12) Gao, X. Localized Corrosion Initiation of Steel in  $CO_2$ Environment. Ph.D. Dissertation, Ohio University, Athens, OH, 2020.

(13) Markham, A. E.; Kobe, K. A. The solubility of carbon dioxide and nitrous oxide in aqueous salt solutions. *J. Am. Chem. Soc.* **1941**, 63 (2), 449–454.

(14) Greenberg, J.; Tomson, M. Precipitation and dissolution kinetics and equilibria of aqueous ferrous carbonate vs. temperature. *Appl. Geochem.* **1992**, 7 (2), 185–190.

(15) Braun, R. D. Solubility of iron(II) carbonate at temperatures between 30 and 80°. *Talanta* **1991**, 38 (2), 205–211.

(16) Marion, G. M.; Catling, D. C.; Kargel, J. S. Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars. *Geochim. Cosmochim. Acta* **2003**, *67* (22), 4251–4266.

(17) Helgeson, H. C. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. *Am. J. Sci.* **1969**, 267 (7), 729.

(18) Preis, W.; Gamsjäger, H. Critical evaluation of solubility data: enthalpy of formation of siderite. *Phys. Chem. Chem. Phys.* 2002, 4 (16), 4014–4019.

(19) Hogfeldt, E. Stability Constants of Metal-Ion Complexes, Part A: Inorganic Ligands; IUPAC Chemical Data Series; Pergamon Press, 1982.

(20) Silva, C. A. R.; Liu, X.; Millero, F. J. Solubility of siderite  $(FeCO_3)$  in NaCl solutions. *J. Solution Chem.* **2002**, *31* (2), 97–108. (21) Sun, W.; Nesic, S.; Woollam, R. C. The effect of temperature and ionic strength on iron carbonate  $(FeCO_3)$  solubility limit. *Corros. Sci.* **2009**, *51* (6), 1273–1276.

(22) Ma, Z.; Brown, B.; Nesic, S.; Singer, M. In Calculation of Surface Speciation on Mild Steel under Applied Polarization. Presented at *CORROISON 2021*, April 19, 2021; paper no. NACE-

2021-16913 (23) Sun, W.; Nesic, S. Kinetics of corrosion layer formation: part 1—iron carbonate layers in carbon dioxide corrosion. *Corrosion* **2008**, *64* (4), 334–346.

(24) Ma, Z.; Yang, Y.; Brown, B.; Nesic, S.; Singer, M. Investigation of precipitation kinetics of FeCO<sub>3</sub> by EQCM. *Corros. Sci.* **2018**, *141* (15), 195–202.

(25) Palmer, D. A.; Hyde, K. E. An experimental determination of ferrous chloride and acetate complexation in aqueous solutions to 300°C. *Geochim. Cosmochim. Acta* **1993**, *57*, 1393–1408.

(26) Heinrich, C. A.; Seward, T. M. A spectrophotometric study of aqueous iron (II) chloride complexing from 25 to 200°C. *Geochim. Cosmochim. Acta* **1990**, *54* (8), 2207–2221.

(27) Tomson, M. B.; Oddo, J. E. The Prediction of Scale and  $CO_2$  Corrosion in Oil Field Systems. Presented at *CORROSION 1999*, San Antonio, TX, Jan. 1, 1999; NACE International: San Antonio, TX, 1999; p 16.

(28) Dunlop, A. K.; Hassell, H. L.; Rhodes, P. R. Fundamental Considerations in Sweet Gas Well Corrosion. Presented at *CORROSION 1983*, Anaheim, CA; NACE International, 1983.

(29) Dugstad, A.; Lunde, L.; Videm, K. Parametric Study of CO<sub>2</sub> Corrosion of Carbon Steel. Presented at *CORROSION 1994*, Baltimore, MD; NACE International, 1994.

(30) van Hunnik, E. W. J.; Pots, B. F. M.; Hendriksen, E. L. J. A. In The Formation of Protective FeCO<sub>3</sub> Corrosion Product Layers In CO2 Corrosion. Presented at *CORROSION 1996*, Houston, TX; NACE International, 1996.

(31) Johnson, M. L.; Tomson, M. B. Ferrous Carbonate Precipitation Kinetics and Its Impact on  $CO_2$  Corrosion, Presented at CORROSION 1991, Houston, TX; NACE International, 1991.

(32) Helgeson, H. C.; Kirkham, D. H.; Flowers, G. C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and Skb. Am. J. Sci. **1981**, 281 (10), 1249–1516.

(33) Pitzer, K. S. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 1973, 77 (2), 268-277.

(34) WELLCORP is an equilibrium solver based on chemical potentials. Helgeson–Kirkham–Flowers equations of state (HKF EOS)<sup>32</sup> are implemented to model the standard state chemical potential in electrolyte, and the Pitzer activity coefficient model<sup>33</sup> is implemented to model activity coefficients.

(35) Batzle, M.; Wang, Z. Seismic properties of pore fluids. *Geophysics* **1992**, *57* (11), 1396–1408.

(36) Madani Sani, F.; Brown, B.; Nesic, S. An electrochemical study of the effect of high salt concentration on uniform corrosion of carbon steel in aqueous  $CO_2$  solutions. *J. Electrochem. Soc.* **2021**, *168* (5), No. 051501.

(37) Fang, H. Low Temperature and High Salt Concentration Effects on General  $CO_2$  Corrosion for Carbon Steel. Master of Science Thesis, Ohio University, Athens, OH, 2006.

(38) Lyman, J. Buffer Mechanism of Sea Water. Ph.D. Thesis, University of California, Los Angeles, CA, 1956.

(39) Mehrbach, C.; Culberson, C. H.; Hawley, J. E.; Pytkowicx, R. M. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. *Limnol. Oceanogr.* **1973**, *18* (6), 897–907.

17035